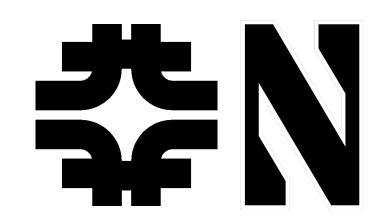
(Efficient) ML in trigger (real-time system) deployment

Nhan Tran

Fermilab/Northwestern ECE A14E1C workshop September 9, 2021

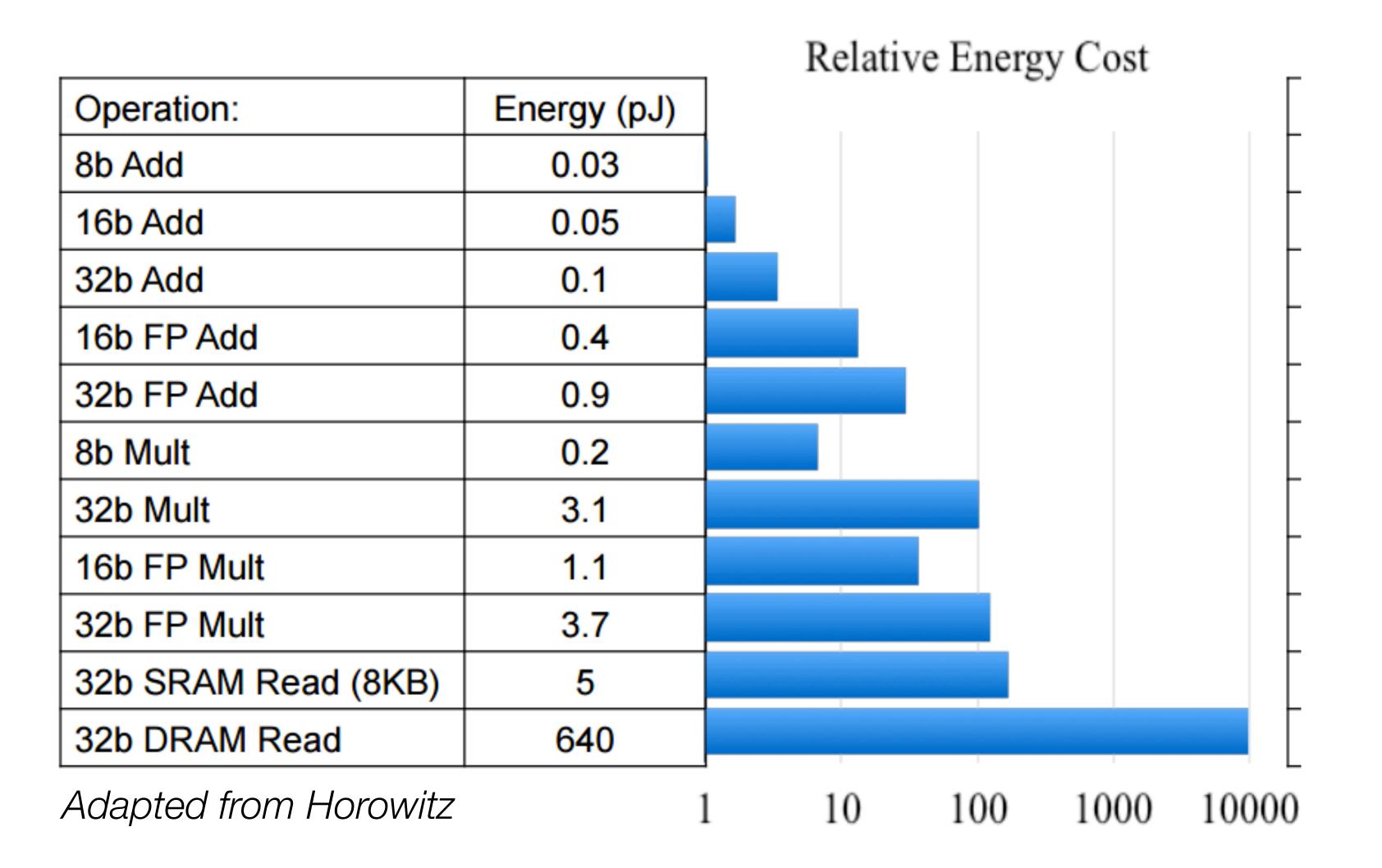


Introduction

- ML is powerful paradigm for optimal and automated control and calibration
 - real-time control for detectors = online data processing/selection (triggering)
 - real-time control for accelerators = efficient beam operation
- ML is computationally expensive but less expensive than data movement
- Plan for this talk
 - *Will not make the case for ML or real-time processing, hopefully you've already been convinced!
 - Discuss system architecture considerations for ML deployment in real-time systems
 - Present a few examples across the full spectrum
 - Open-ended thoughts on future challenges

Outline

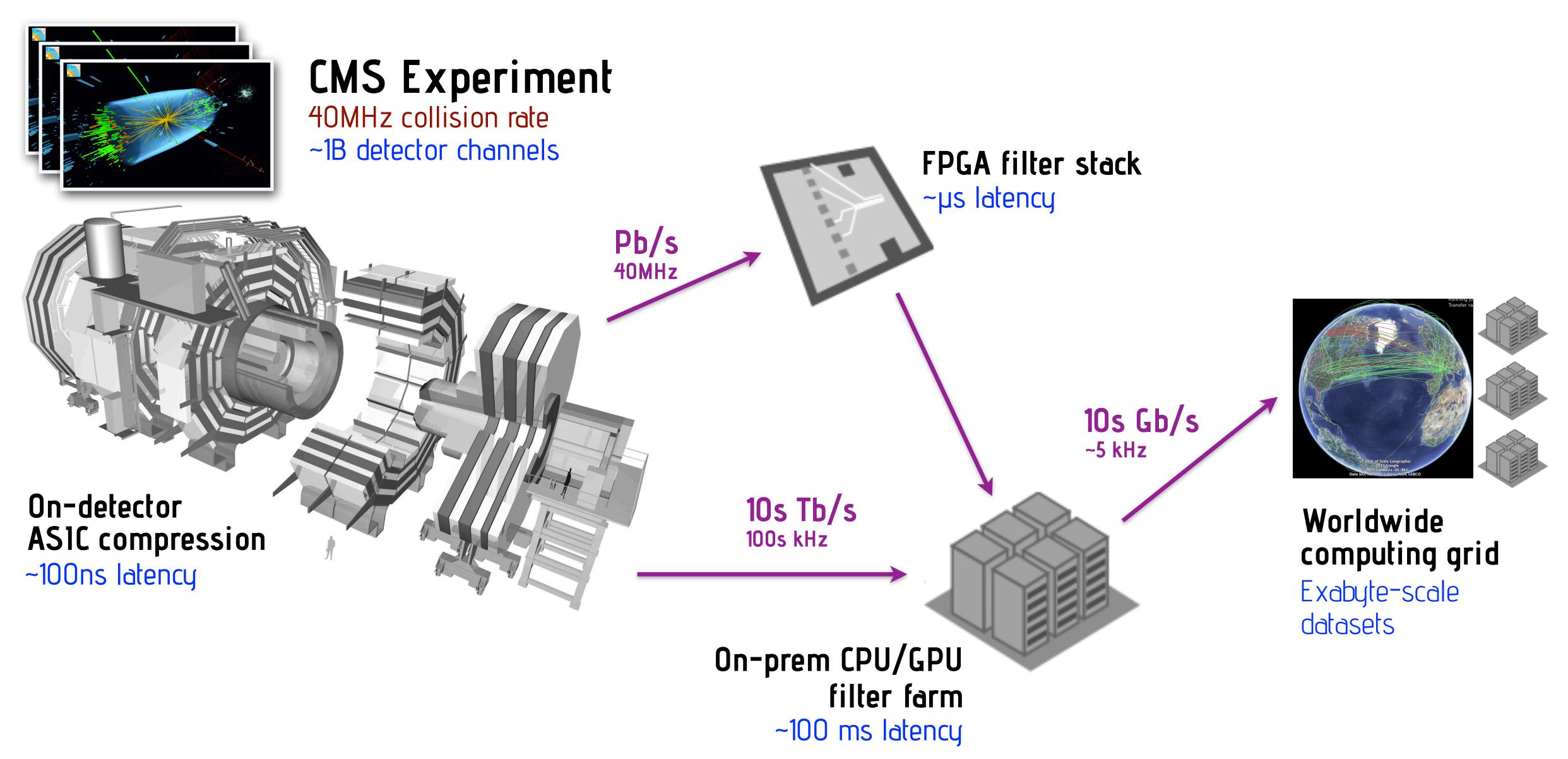
- System level goals and constraints
 - Bandwidth, latency, and processing technologies
- ML in trigger techniques and examples
 - Optimized algorithms, implementations, tools (see Dylan's talk).
 - Examples:
 - Reconfigurable ASICs (see Farah's talk)
 - CMS Muon Trigger
 - SONIC
- Open challenges and food for thought
 - Continuous learning (w/accelerator control example)
 - Training samples online learning, transfer learning, domain adaptation



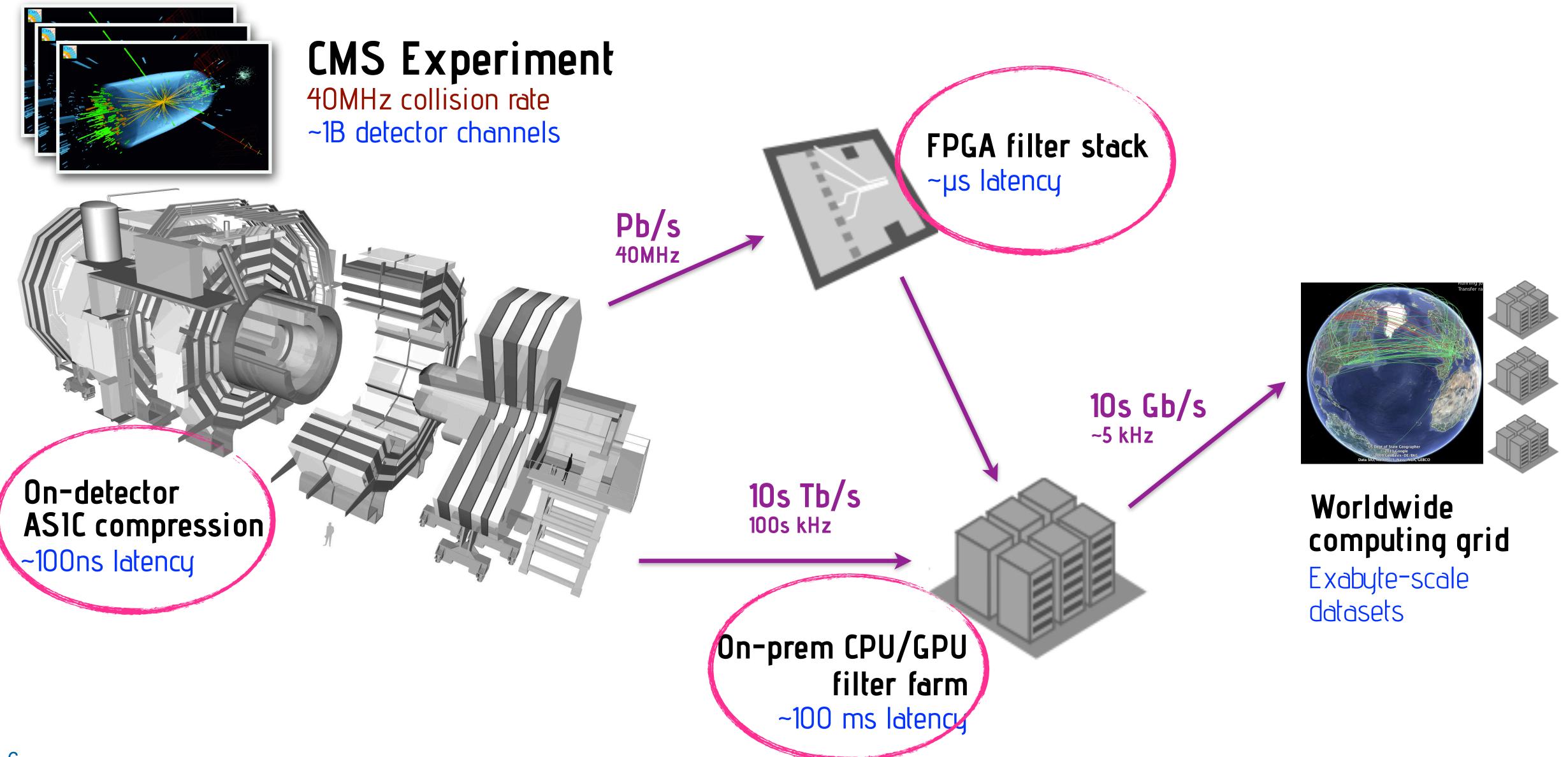
Moving data is expensive

Universal struggle — reduce data as close to the source as possible **vs** important data FOMO **ML gets us closer to enjoying the best of both worlds?**

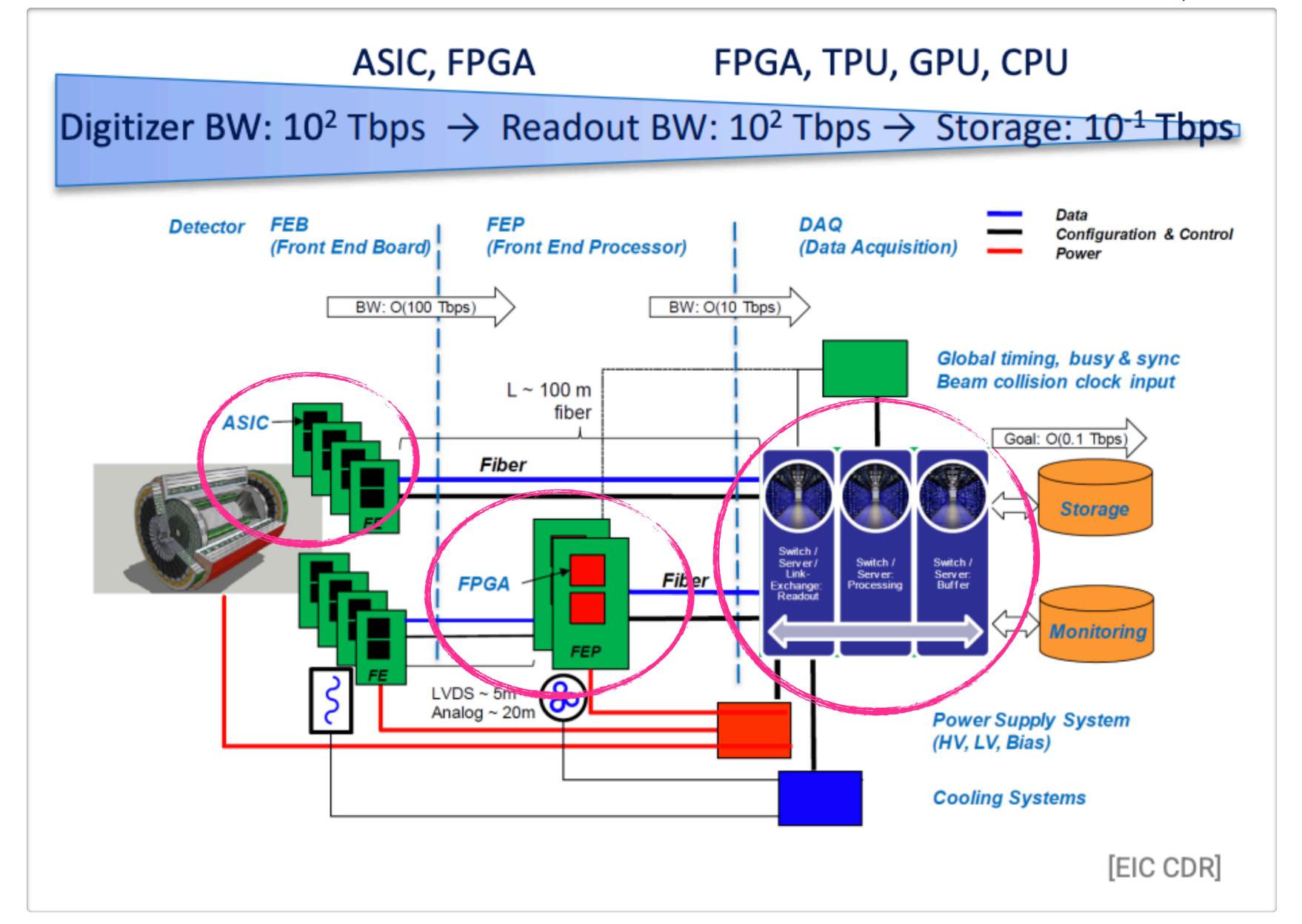
An example of an extremely heterogeneous real-time system

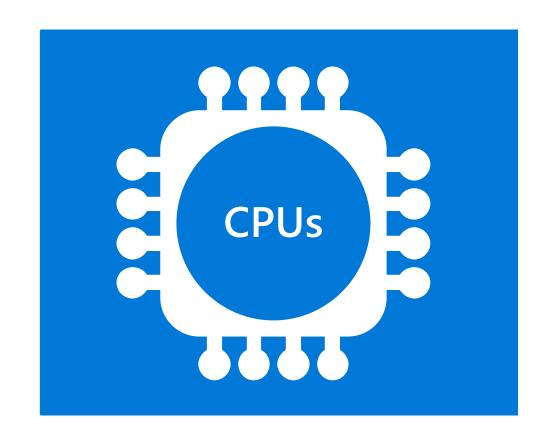


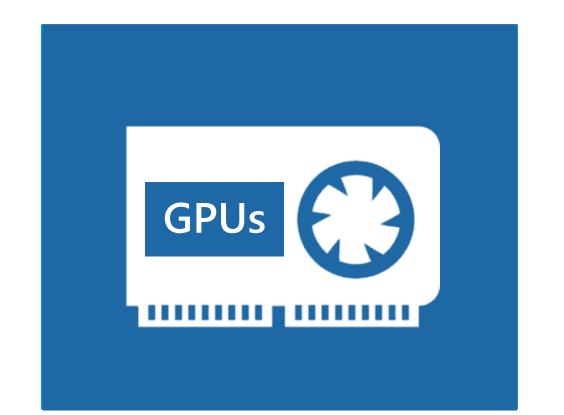
An example of an extremely heterogeneous real-time system

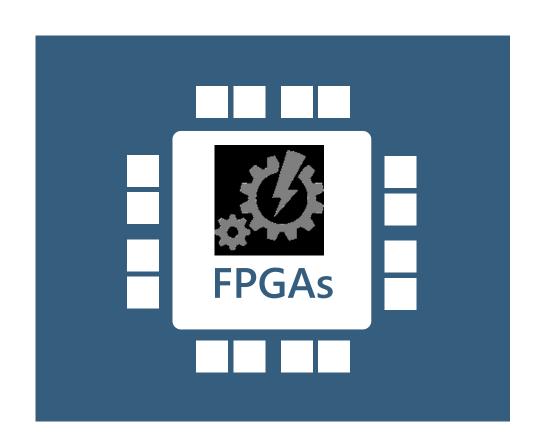


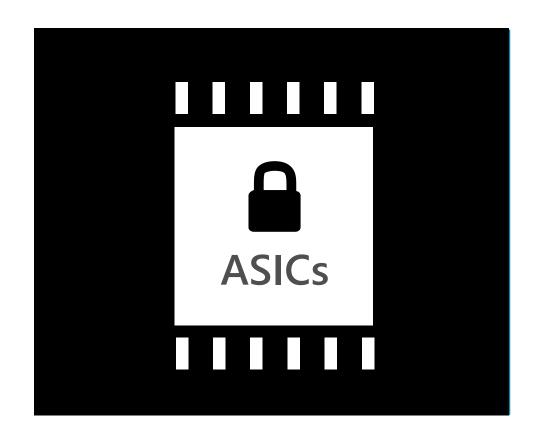
Slides from Jin, Phil









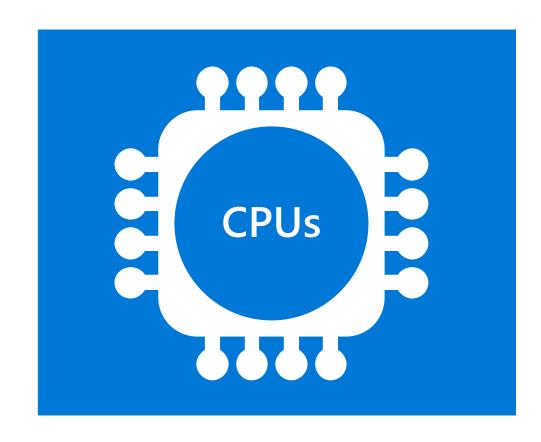


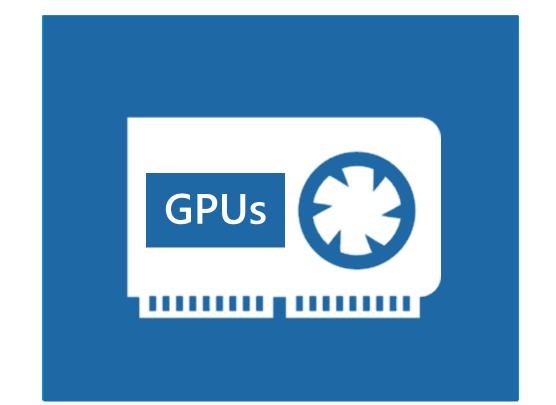
FLEXIBILITY

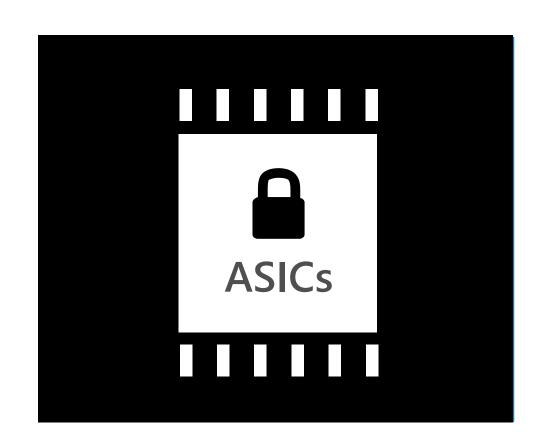
EFFICIENCY

Guidelines:

- > 100 Gbps throughput
- < 1ms computational latency
- < 10W power budget

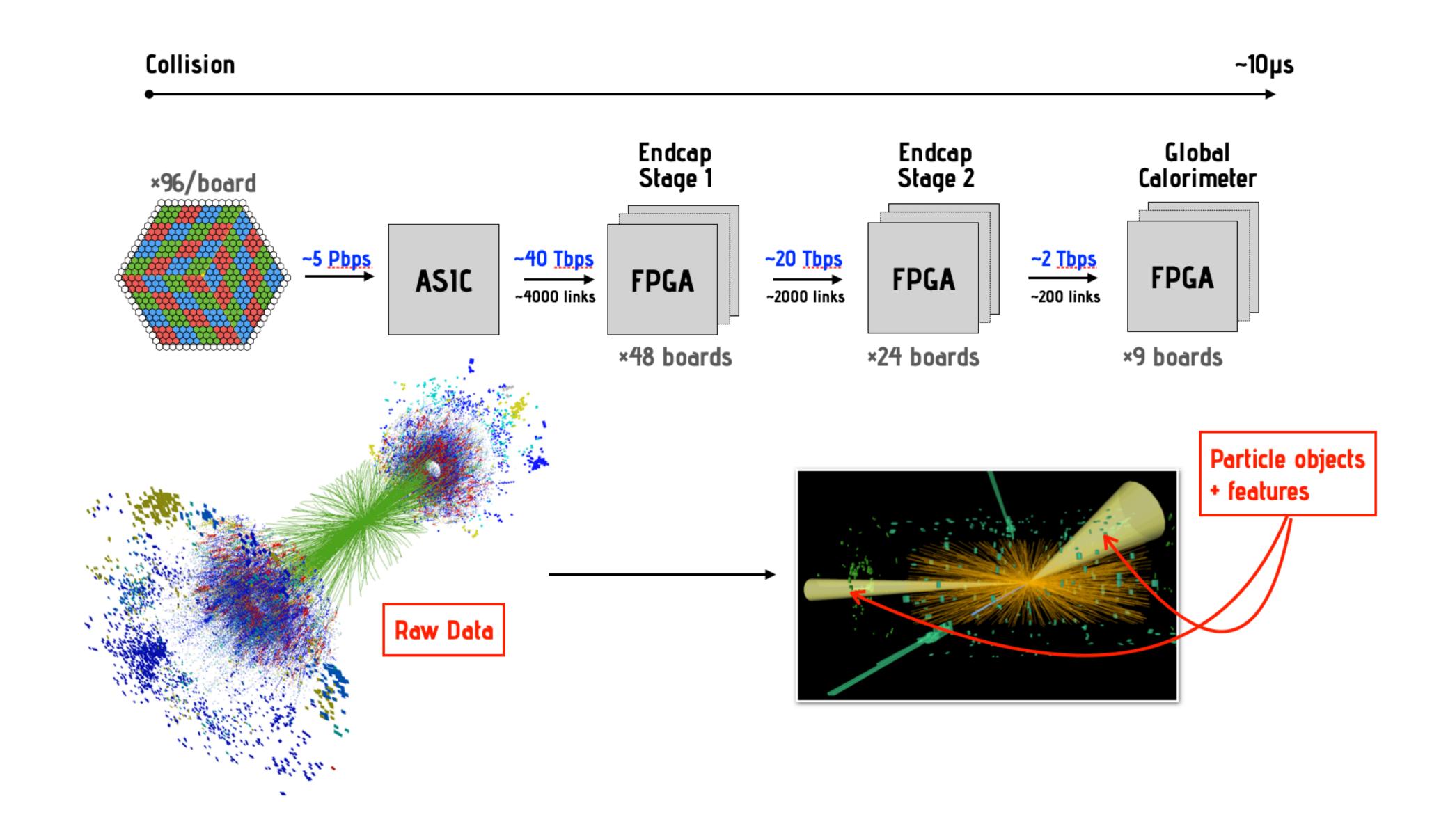




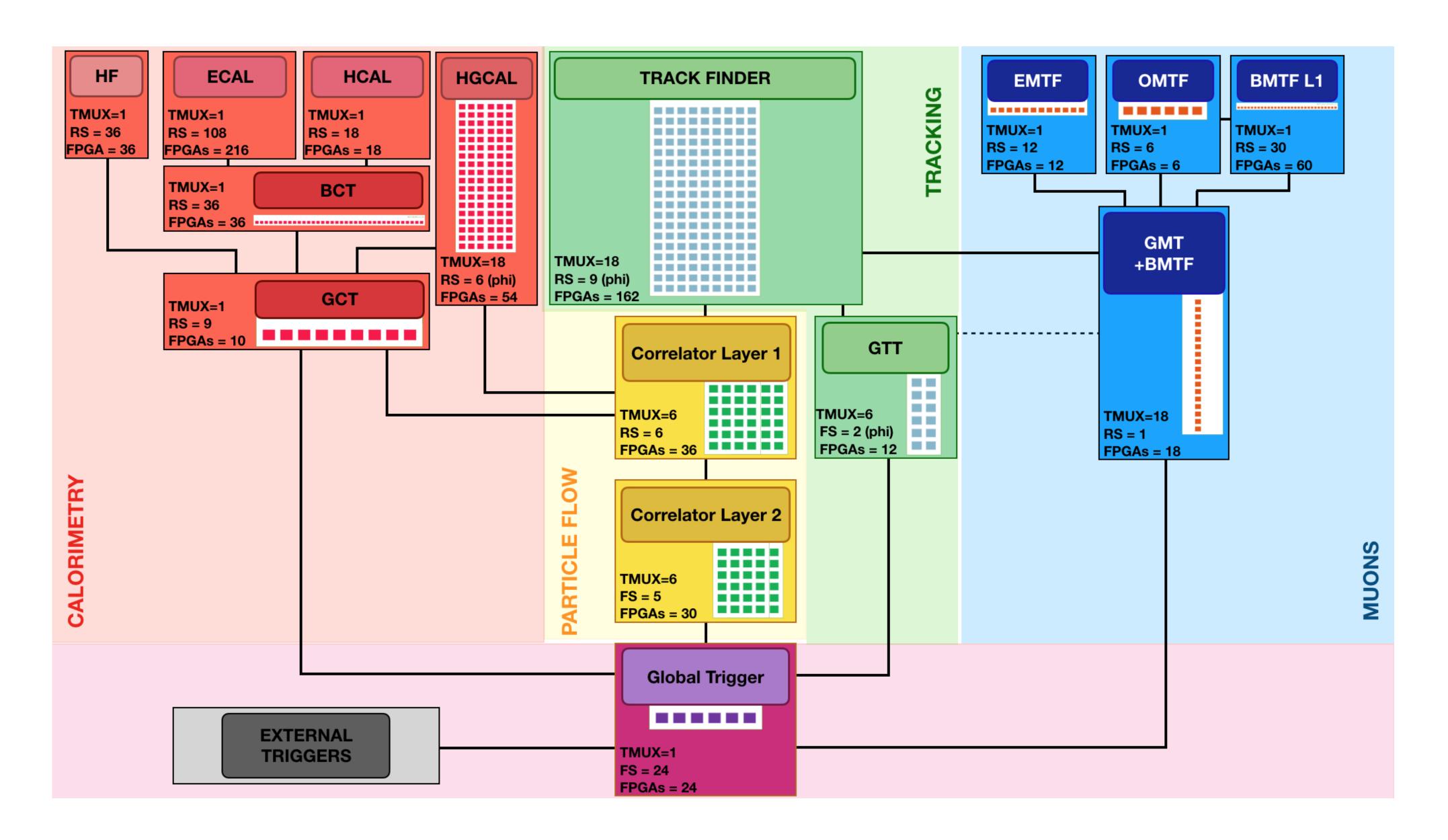




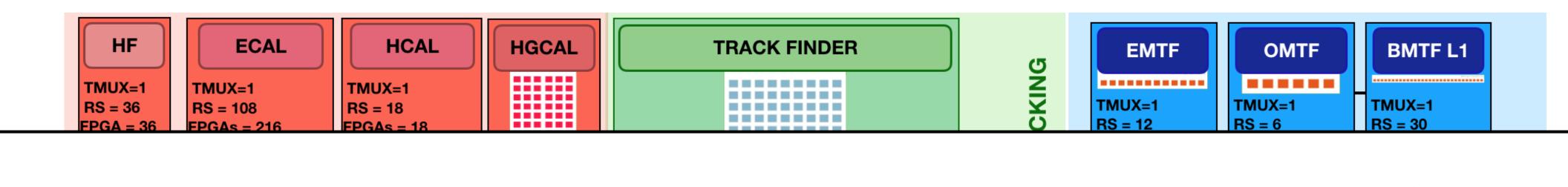
Heterogeneous, hardware-constrained multi-tiered systems



LHC L1 FPGA Trigger as task-based event processing



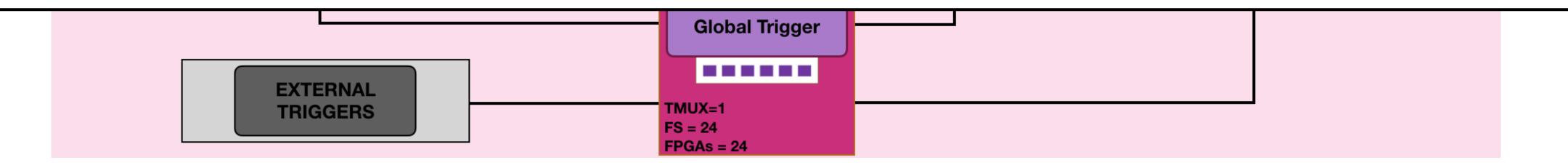
LHC L1 FPGA Trigger as task-based event processing



Each little box is a customized compute microarchitecture for a specific task – a huge job

Can we make ML easily accessible at this stage?

What about when we leave custom embedded systems and go to offthe-shelf computing? How to integrate options beyond CPU? GPU?

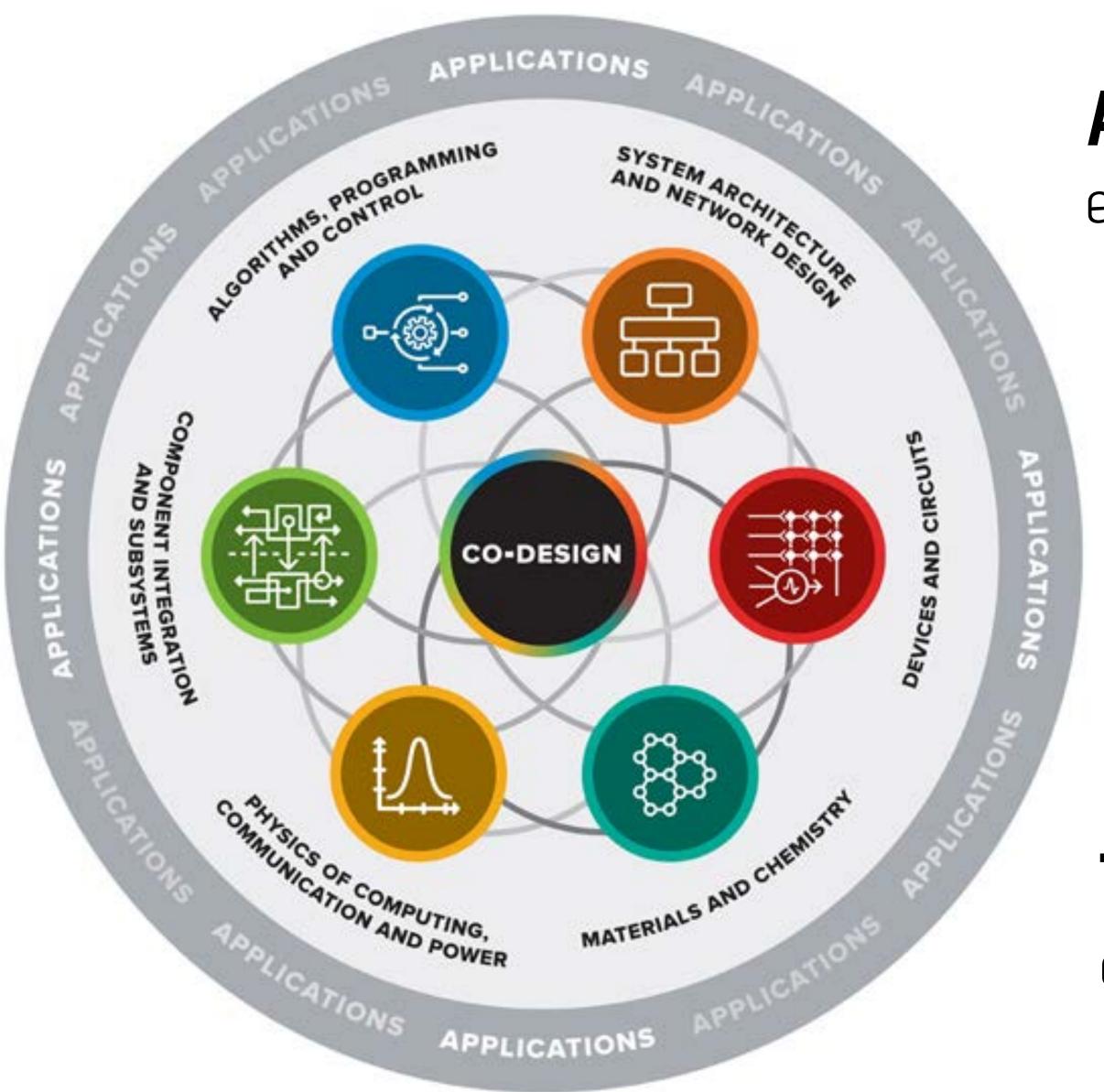


Guiding principles

- I have yet to talk about any specific (ML) algorithm or network architecture there are many approaches, existent and in development
 - Very interesting to see the many different ideas in this workshop
- Designing a **real-time**, **resource/latency constrained system** adds additional axes of optimization try to build an adaptable, flexible, scalable system
 - Accessible at each layer of data processing
 - ML provides powerful data reduction techniques, has the potential to account for unknown unknowns

Efficient ML in trigger - techniques and examples

Figure 1 (algorithms, implementations, tool flows for) A Efficient ML in trigger — techniques and examples



Algorithms:

e.g. AlexNet to SqueezNet/OnceForAll, NAS

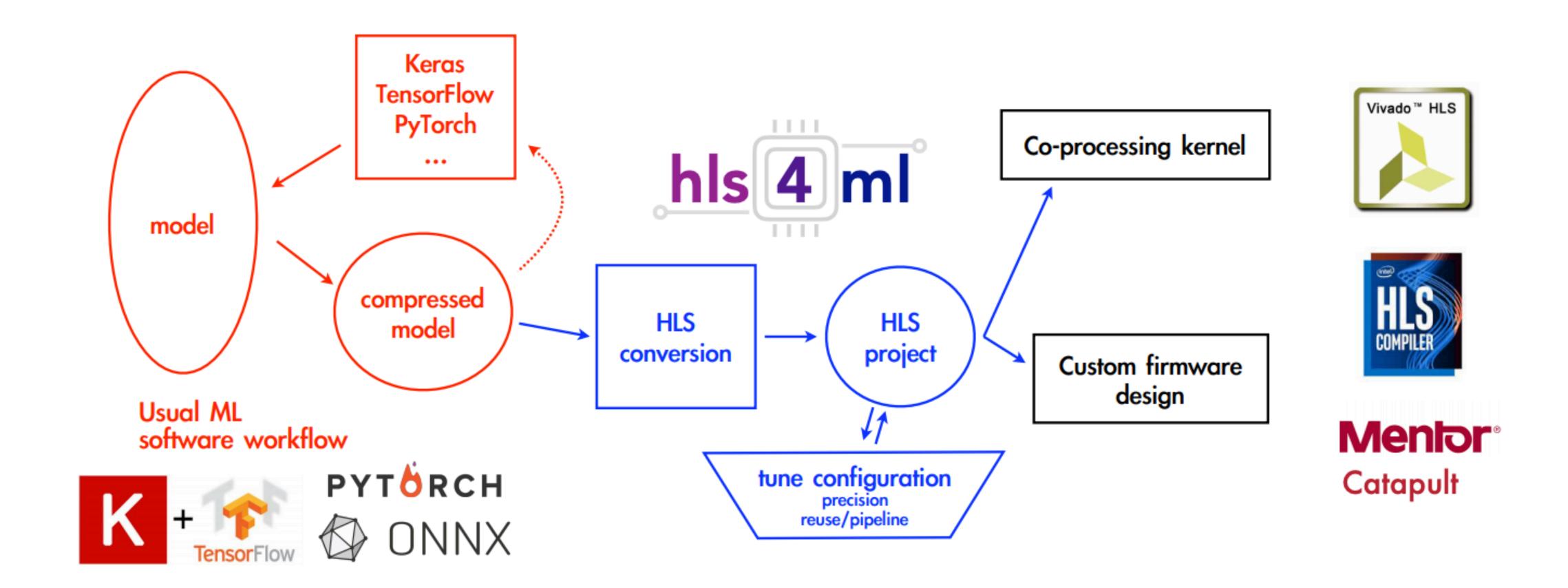
1mplementations:

e.g. Quantization, Pruning, Dataflow

Tool flows:

e.g. 1Rs, synthesis, EDA

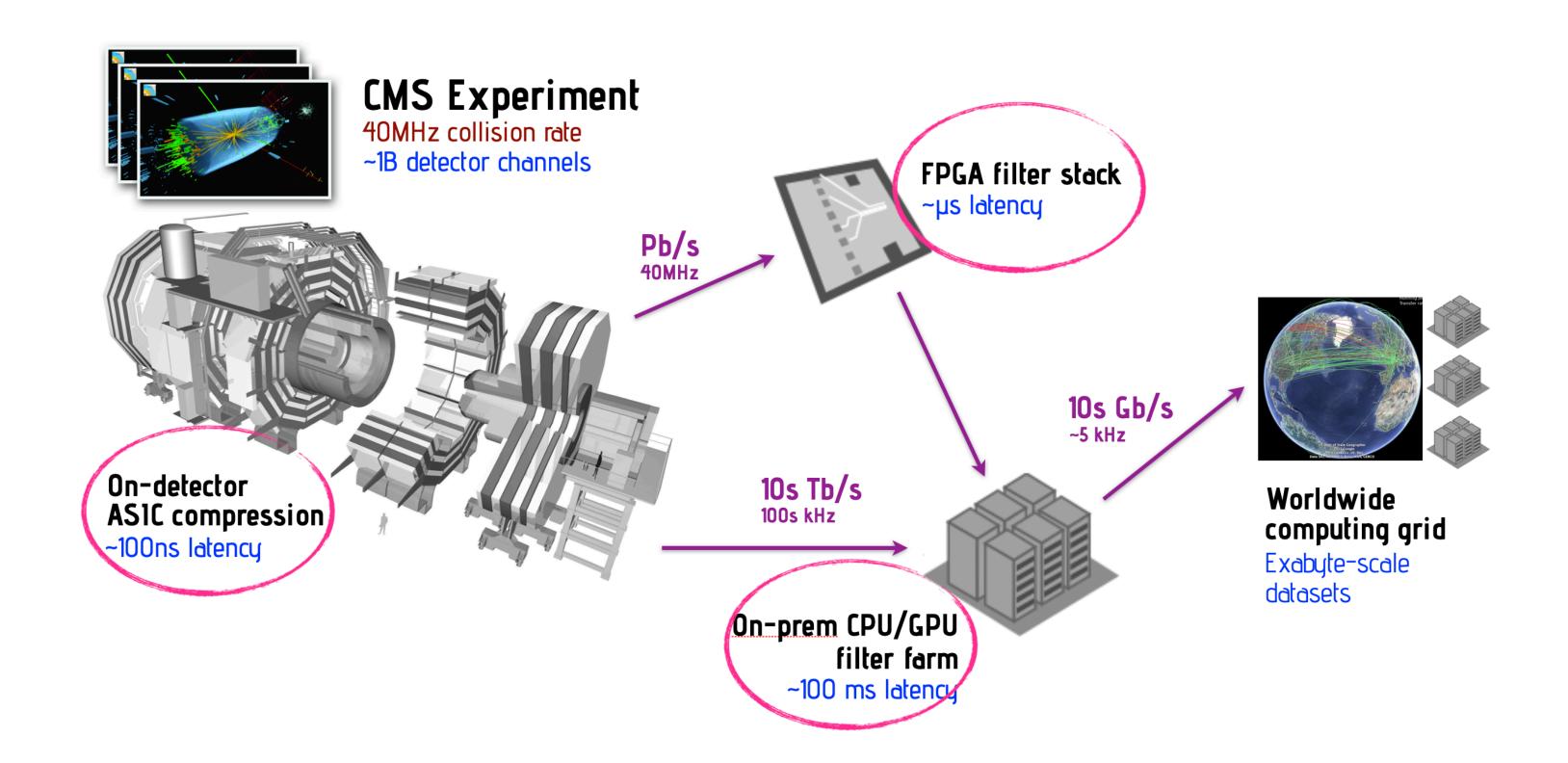
hIS4ml: <u>a codesign workflow!</u>



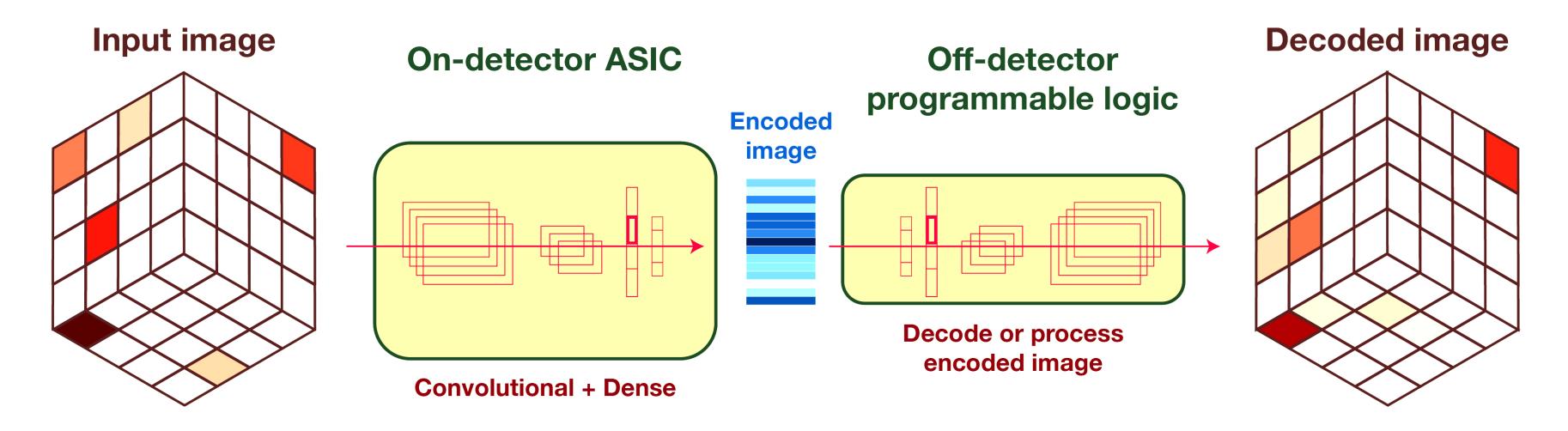
See Dylan Rankin's talk!

Examples

- The frontest end of the detector reconfigurable ASIC data compression
- Level-1 FPGA trigger deployment
- Efficient deployment of coprocessors in trigger



A1 ASIC



- **Enable** more computationally complex compression algorithms
- Customize the compression algorithm per sensor location
- Adapt the algorithm for changing conditions, new ideas

Fixed algorithm architecture, but allow weights to be reconfigurable

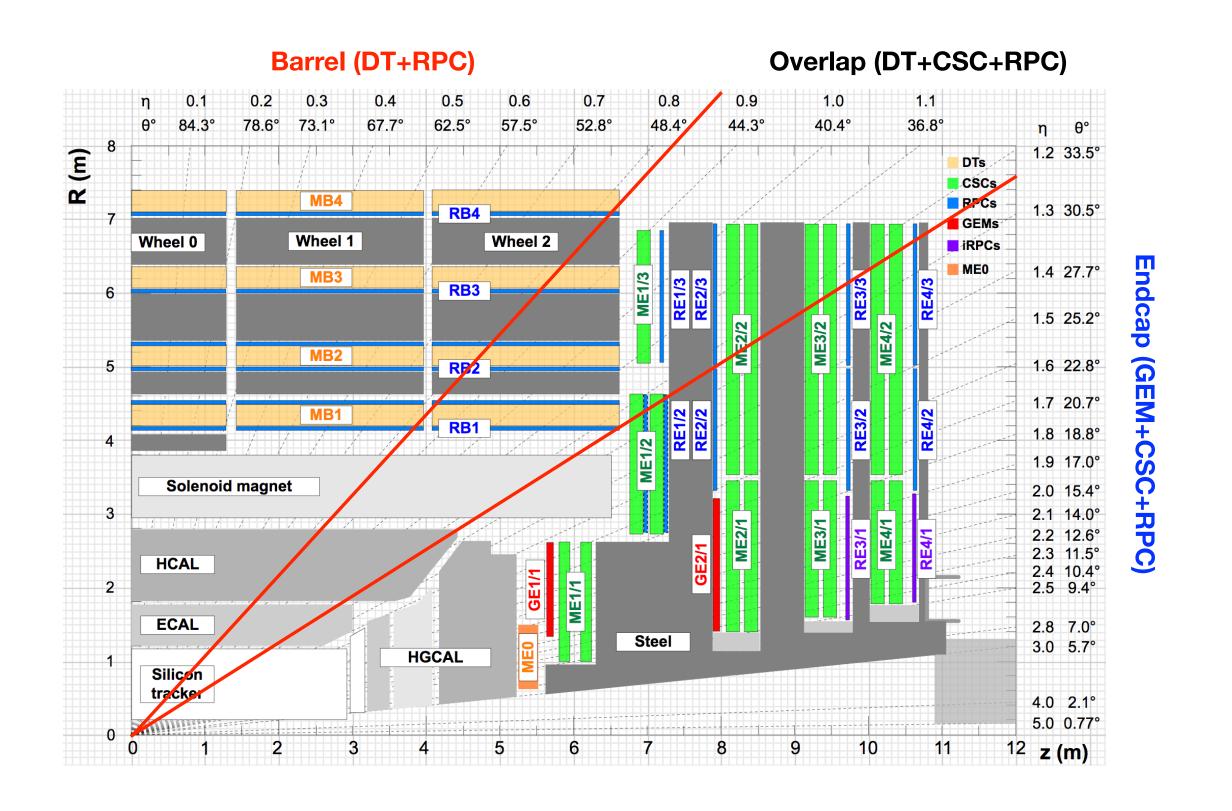
Requirements			
Rate	40 MHz		
Total ionizing dose	200 Mrad		
High energy hadron flux	1 × 10 ⁷ cm ² /s		

Metric	Metric Simulation Target	
Power	48 mW	<100 mW

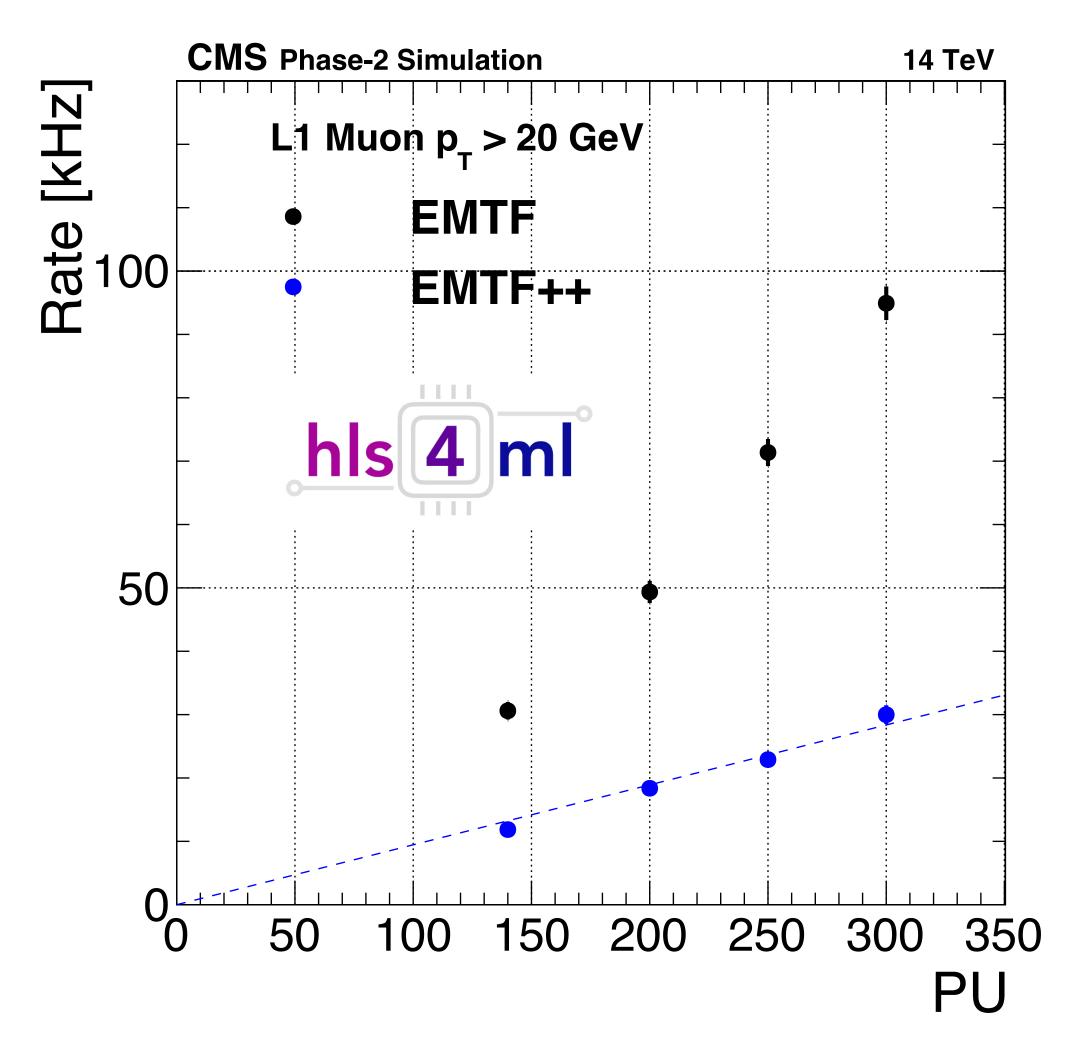
See Farah Fahim's talk!

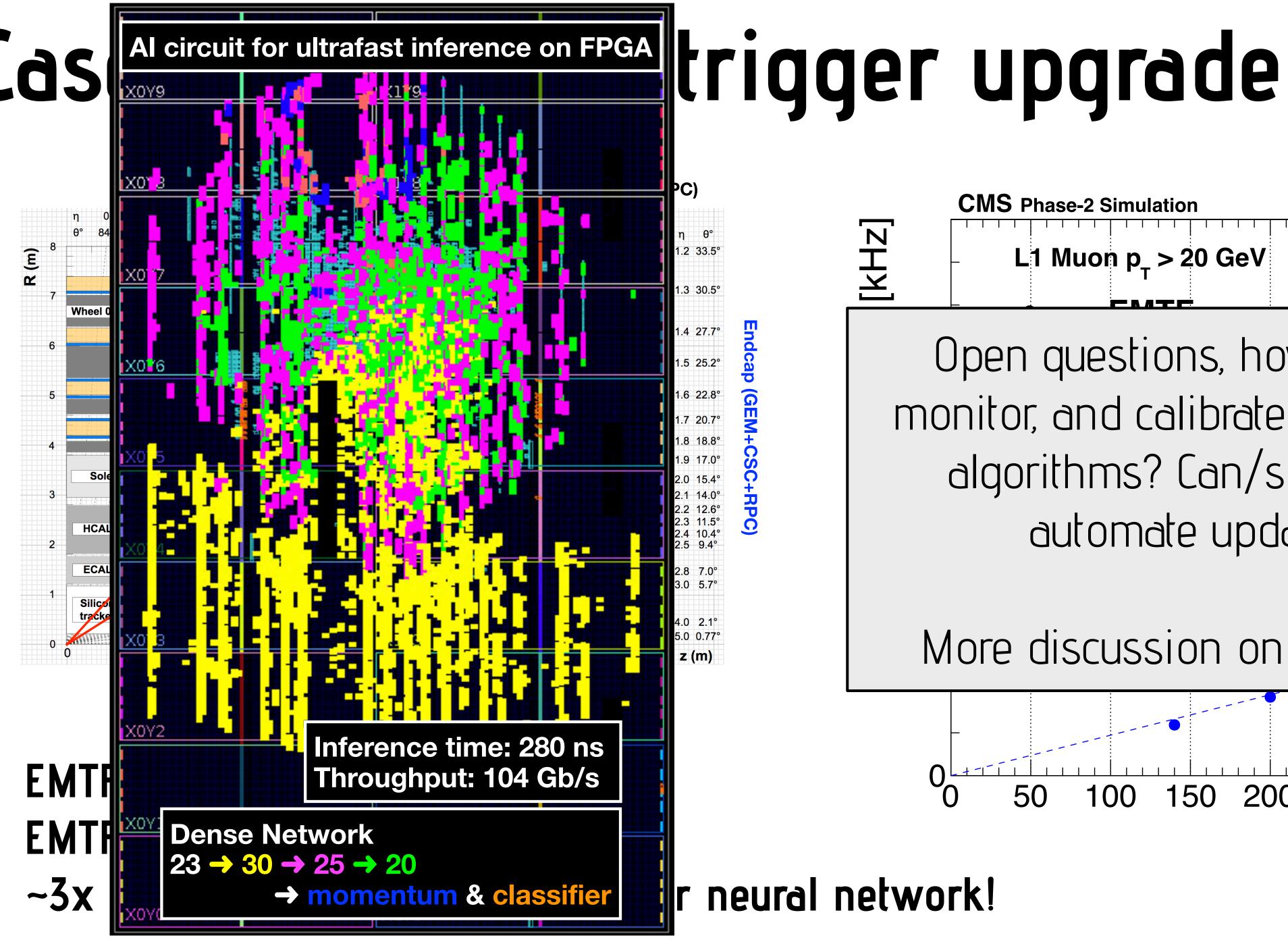
Open questions, how to optimally build latent space, use representation downstream? |

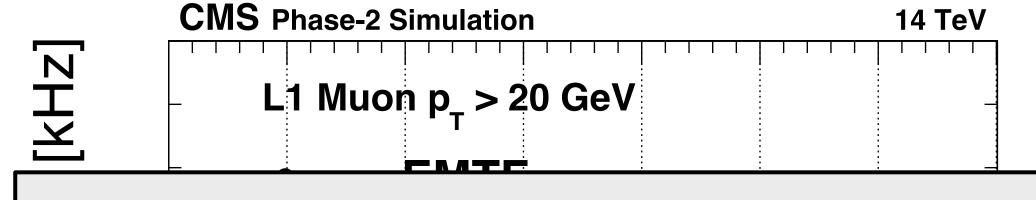
Case study: muon trigger upgrade



~3x reduction in the trigger rate for neural network!

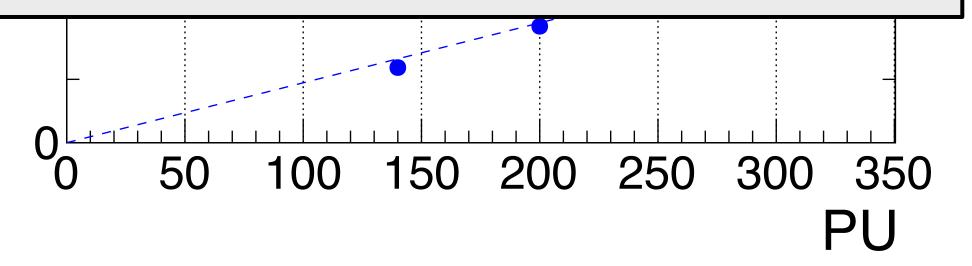






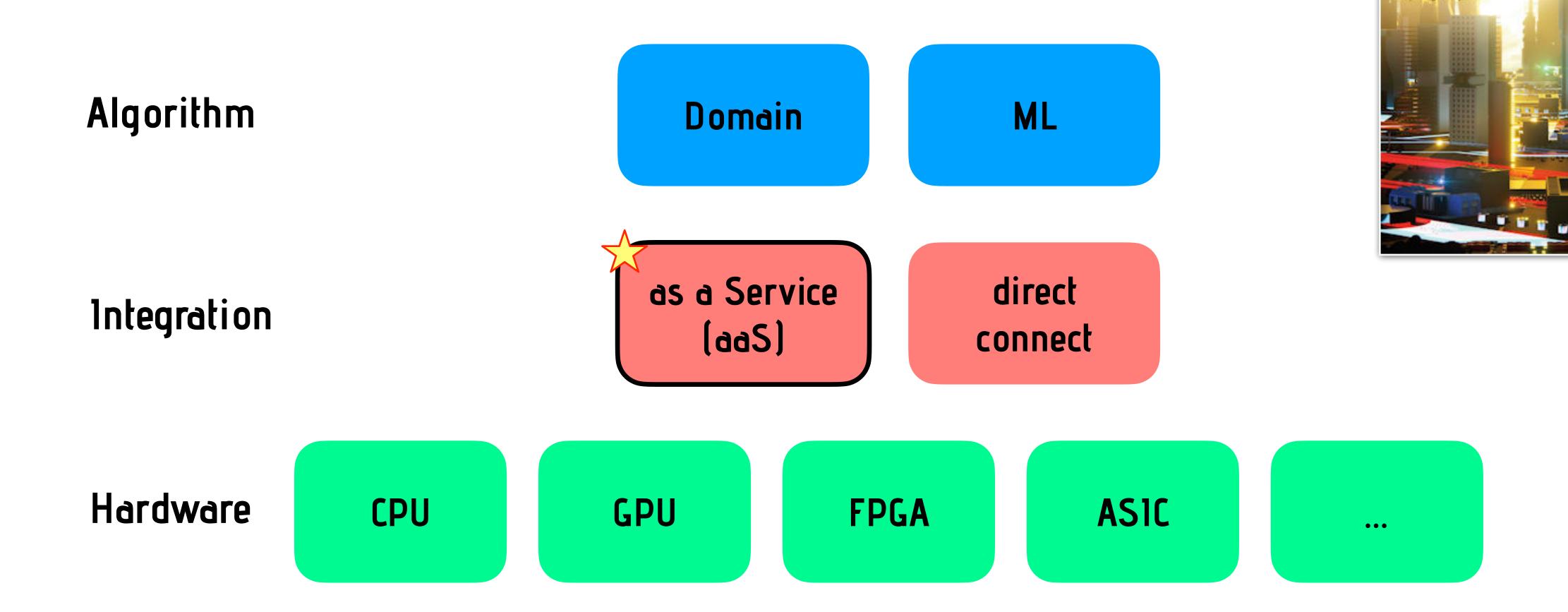
Open questions, how to train, monitor, and calibrate such online algorithms? Can/should we automate updates?

More discussion on this later...



Ir neural network!

Compute acceleration



How to accommodate an unknown number of algorithms on an unknown hardware platform?

COMMUNICATIONS

A New Golden Age for Computer Architecture

Monitoring Noise Pollution

ACM

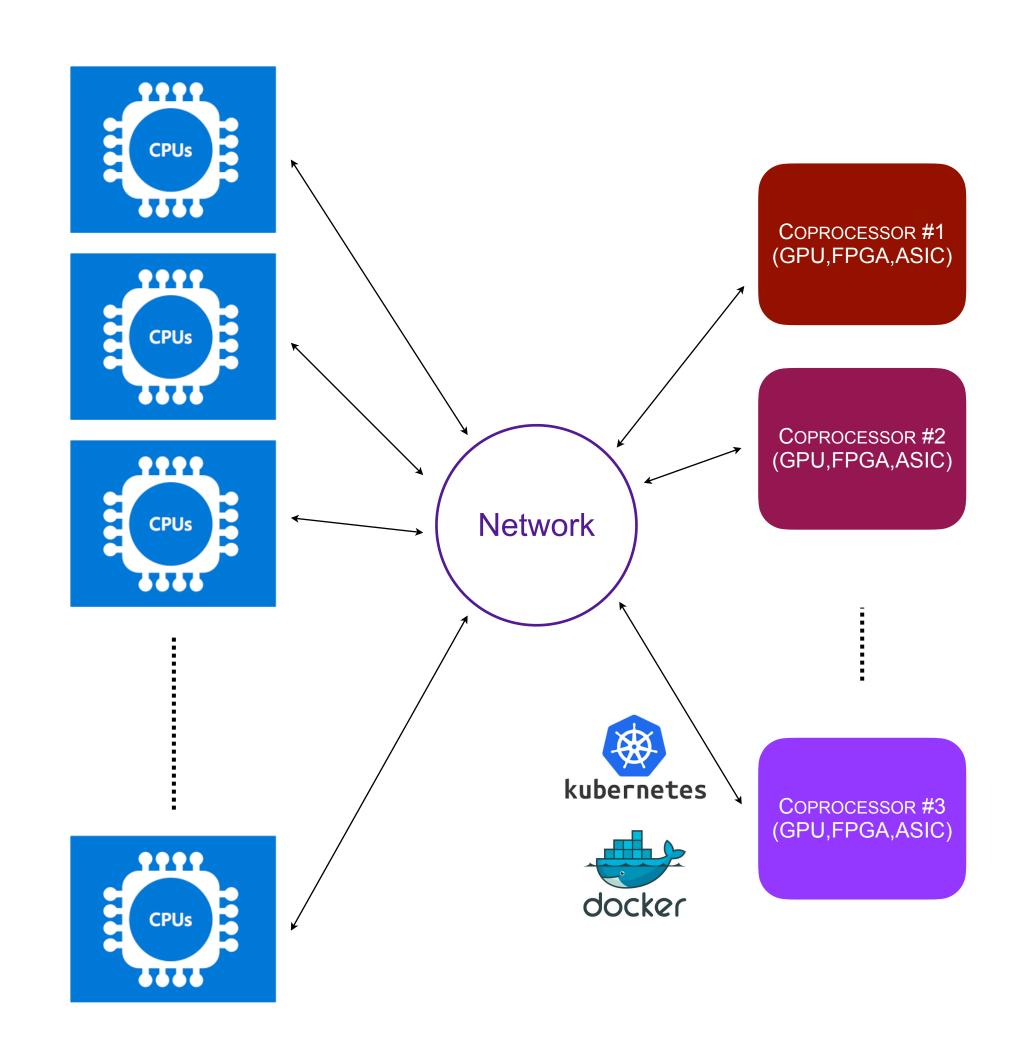
SONIC

Services for Optimized Network Inference on Coprocessors

Flexible - optimize the hardware based on task; no need to support many ML frameworks in experiment software

Adaptable - right-size the system to the task, you choose the number of coprocessors based on computing needs

Scalable – coprocessor need not be co-located next to existing CPU infrastructure; common software framework



N_{CPU} != N_{coprocessor}

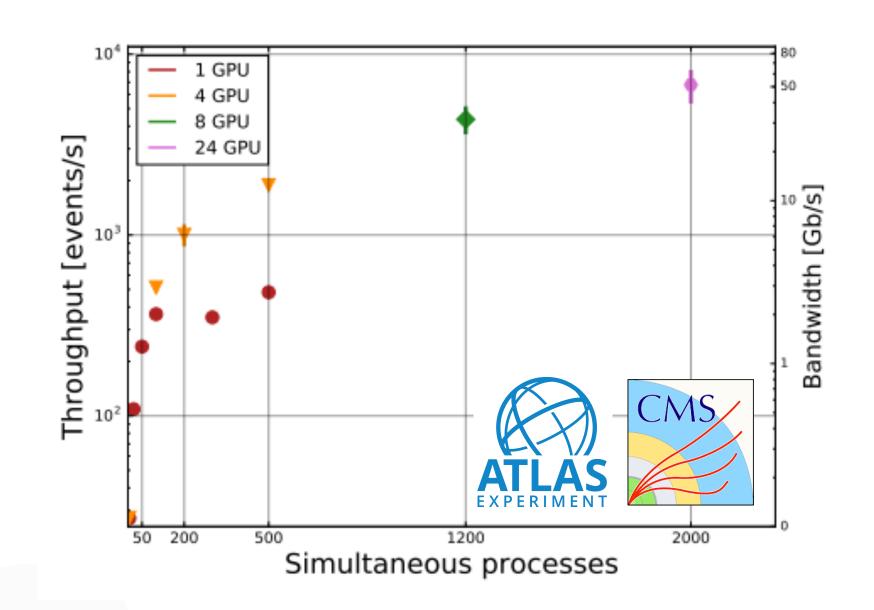
Results

Demonstrated significant and efficient acceleration of LHC/ProtoDUNE tasks

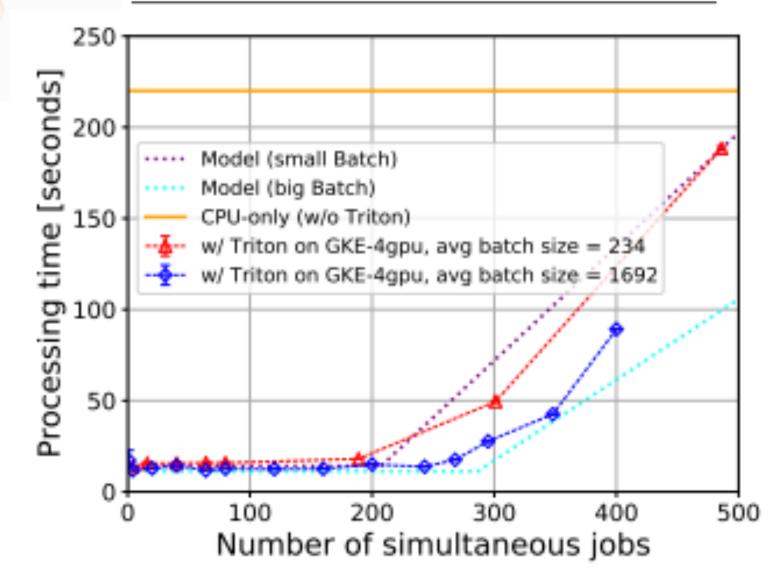
Broad range of tasks — cluster calibration, jet tagging, cosmics 1D, Graph NNs

Deployed on-premises, in the cloud, and at HPC - exploring all types of new hardware (FPGA, GPU, TPU, ...)

References:
arXiv:1904.08986
arXiv:2007.10359
arXiv:2009.04509
arXiv:2010.08556

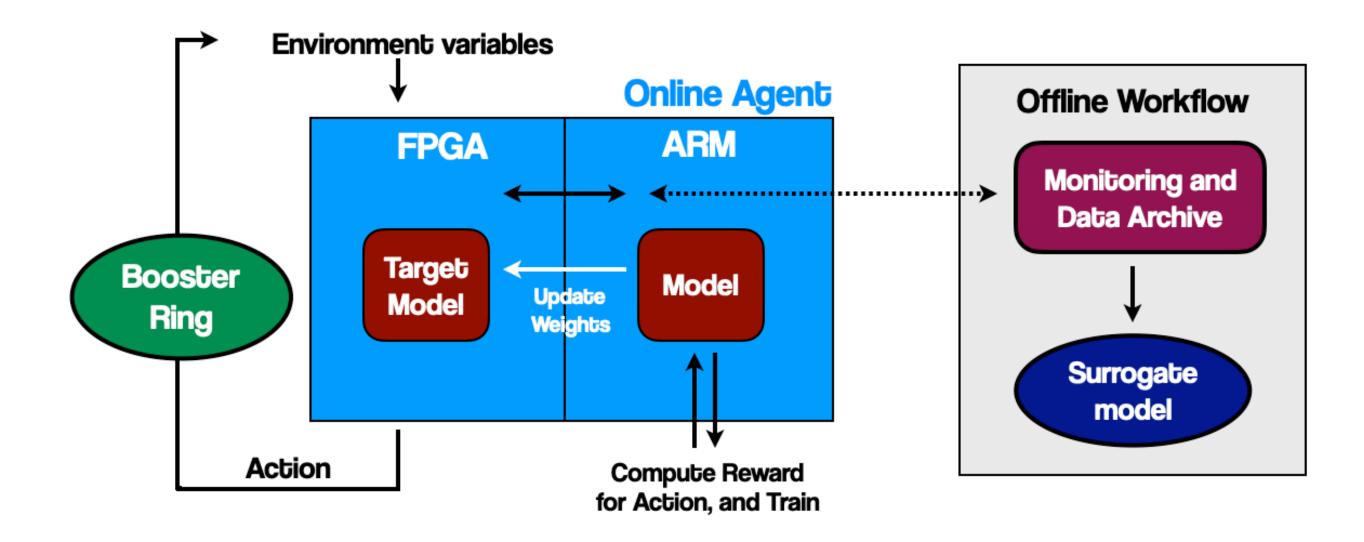


Wall time (s)				
	ML module	non-ML modules	Total	
CPU only	220	110	330	
CPU + GPUaaS	13	110	123	

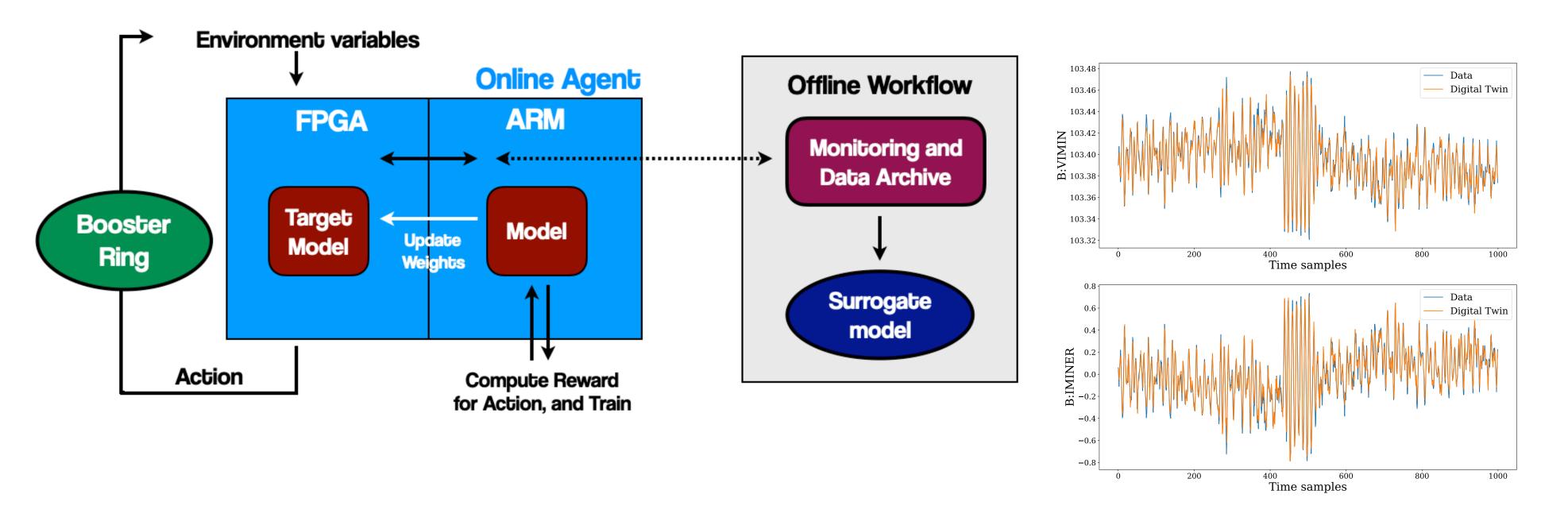


Open-ended thoughts and future challenges

Continuous learning setup



Continuous learning setup



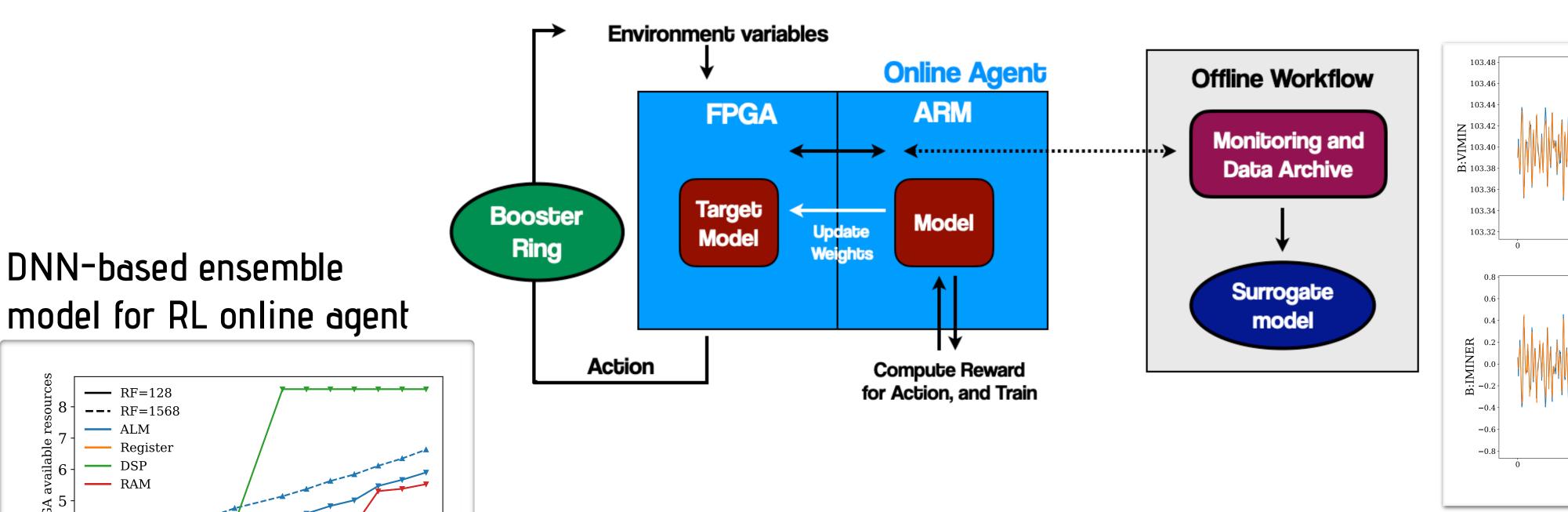
LSTM-based network using Deep Q-learning framework for surrogate model to mimic behavior of Booster

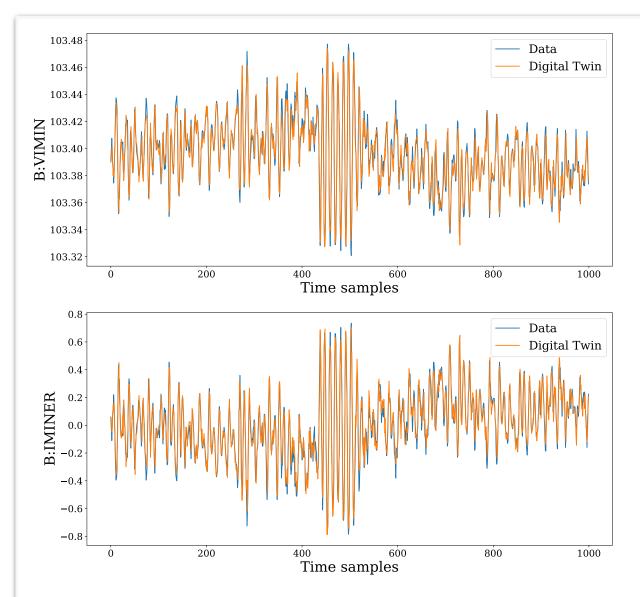
Continuous learning setup

Percent of Arria1

22

Total bits in fixed-point precision





LSTM-based network using Deep Q-learning framework for surrogate model to mimic behavior of Booster

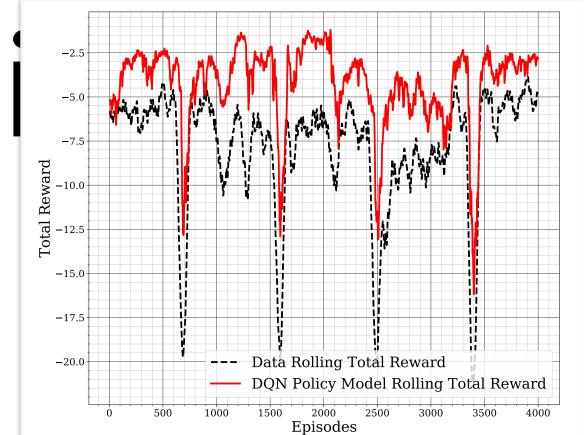
Continuous learni

22

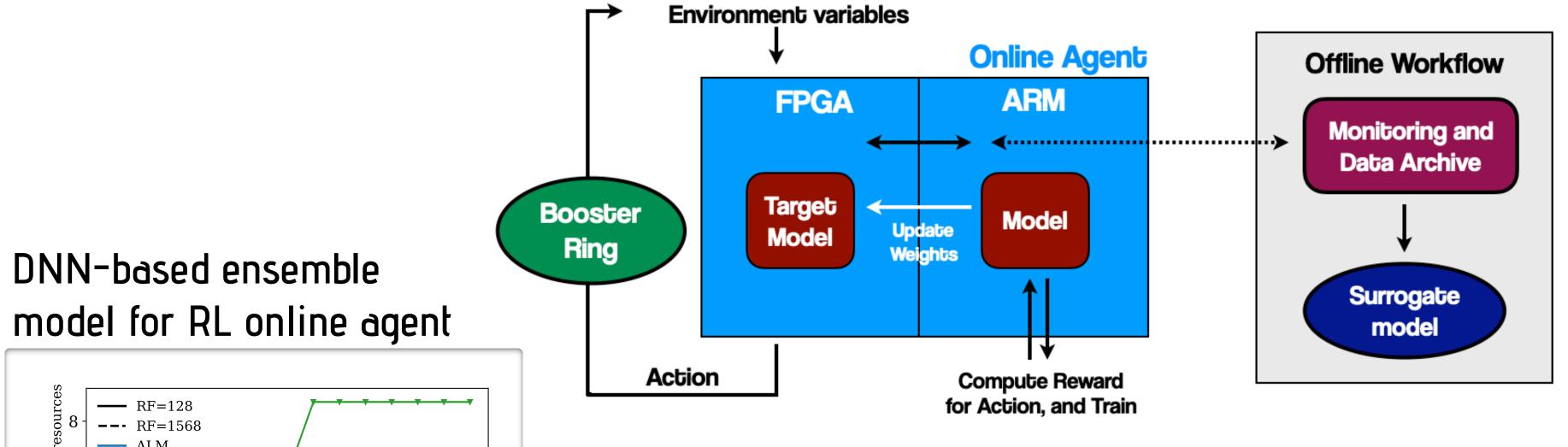
Total bits in fixed-point precision

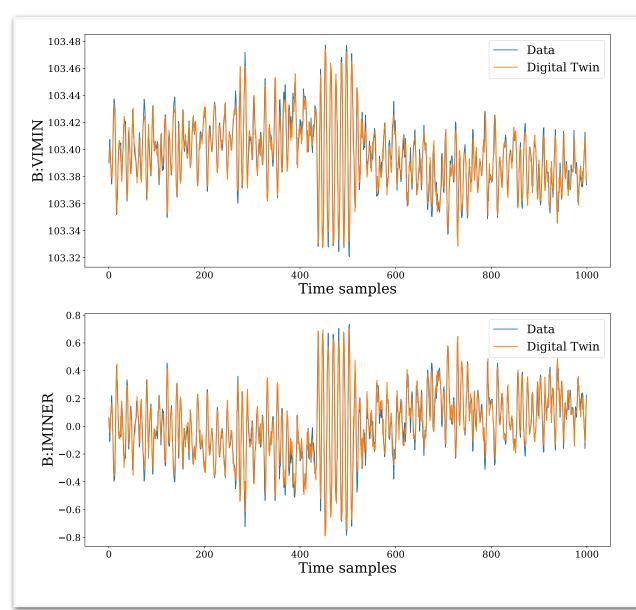
Register

Percent of Arria1



Reduced beam losses predicted from RL approach





LSTM-based network using Deep Q-learning framework for surrogate model to mimic behavior of Booster

Challenges

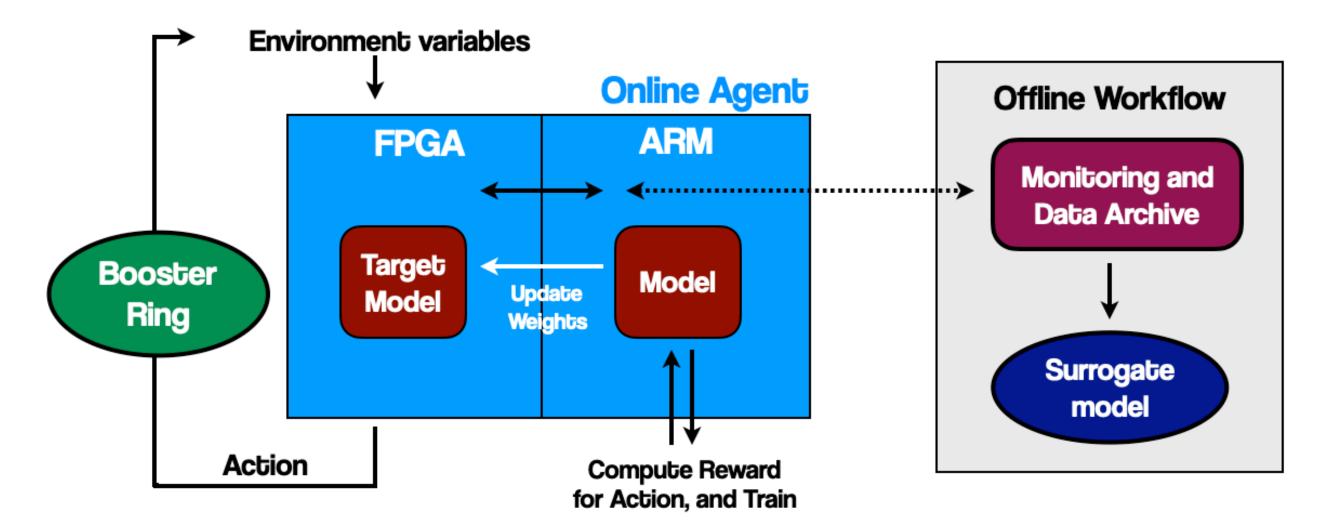
Configuration like this with reconfigurable weights can be expensive, what about partially reconfigurable weights/activiations?

e.g. tiny transfer learning, https://arxiv.org/abs/2007.11622

Data movement is expensive!

Can training data be transient?

Should we put the training hardware closer?



Is an optimized implementation able to generalize to all detector/accelerator conditions?

e.g. https://arxiv.org/abs/2102.11289

Outlook

- Real-time ML deployment still evolving but it's very promising!
 - A lot of progress, quickly
- In rapidly moving space, considerations for system design that is both performant but flexible
- Examples given from sensor integration front-end, to FPGA filter stack, to coprocessors
- How to balance optimized performance and hardware implementations with generalizability and interpretability?